The Enumerative Geometry of K3 Surfaces and Modular Forms

نویسندگان

  • JIM BRYAN
  • NAICHUNG CONAN LEUNG
چکیده

Let X be a K3 surface and C be a holomorphic curve in X representing a primitive homology class. We count the number of curves of geometric genus g with n nodes passing through g generic points in X in the linear system |C| for any g and n satisfying C · C = 2g + 2n − 2. When g = 0, this coincides with the enumerative problem studied by Yau and Zaslow who obtained a conjectural generating function for the numbers. Recently, Göttsche has generalized their conjecture to arbitrary g in terms of quasi-modular forms. We prove these formulas using Gromov-Witten invariants for families, a degeneration argument, and an obstruction bundle computation. Our methods also apply to P blown up at 9 points where we show that the ordinary Gromov-Witten invariants of genus g constrained to g points are also given in terms of quasi-modular forms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Langlands Program and String Modular K3 Surfaces

A number theoretic approach to string compactification is developed for CalabiYau hypersurfaces in arbitrary dimensions. The motivic strategy involved is illustrated by showing that the Hecke eigenforms derived from Galois group orbits of the holomorphic two-form of a particular type of K3 surfaces can be expressed in terms of modular forms constructed from the worldsheet theory. The process of...

متن کامل

Evidence for a conjecture of Pandharipande

In [3], Pandharipande studied the relationship between the enumerative geometry of certain 3-folds and the Gromov-Witten invariants. In some good cases, enumerative invariants (which are manifestly integers) can be expressed as a rational combination of Gromov-Witten invariants. Pandharipande speculated that the same combination of invariants should yield integers even when they do not have any...

متن کامل

Abelianisation of orthogonal groups and the fundamental group of modular varieties

We study the commutator subgroup of integral orthogonal groups belonging to indefinite quadratic forms. We show that the index of this commutator is 2 for many groups that occur in the construction of moduli spaces in algebraic geometry, in particular the moduli of K3 surfaces. We give applications to modular forms and to computing the fundamental groups of some moduli spaces. Many moduli space...

متن کامل

Modular forms and K3 surfaces

For every known Hecke eigenform of weight 3 with rational eigenvalues we exhibit a K3 surface over Q associated to the form. This answers a question asked independently by Mazur and van Straten. The proof builds on a classification of CM forms by the second author.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999